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Abstract. When dealing with mechanical fatigue, making predictions about the life of materials 

subject to this type of failure presents itself as a persistent challenge. Throughout this continuous 

journey of studies and challenges, different methods have emerged to approach this complex 

issue. Among this process, the use of machine learning stands out as a promising way to predict 

life more accurately and efficiently. This article, based on a literature review, analyses and 

summarizes various current articles on fatigue analysis development using machine learning 

methods and presents relevant research findings. It is verified that machine learning models, in 

general, demonstrates remarkable capabilities in fatigue life prediction, outperforming 

traditional models across a wide compliable range of applications. In conclusion, is possible to 

affirm that the adaptability and precision of machine learning techniques in handling the 

complexities of fatigue analysis represent a significant advancement in predictions life, marking 

a notable shift in the field. 
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1. Introduction 

The process of failure due to cyclic loading is called 

fatigue. The consequences of this phenomenon 

represent a major concern in engineering problems. It 

is expected that at least half of all mechanical failures 

are attributed to fatigue. As a result, the annual cost of 

materials fatigue to the United States economy is 

about 3% of gross domestic product (1). 

The prediction of fatigue life, defined as the number of 

cycles until fatigue failure, is a fact of difficult 

precision in real-world scenarios, requiring the 

consideration of various variables to prevent 

unwanted and dangerous failures. Initially, analytical 

approaches to study fatigue issues relied mainly on 

the deduction of classical theory to understand this 

phenomenon [9]. Subsequently, experimental data 

were incorporated into abstract theoretical models 

and resorted to simulation on finite element-based 

simulation. In this context, several methods for 

predicting fatigue life have been proposed, such as the 

local stress-strain method, stress field intensity 

approach, critical plane method, energy-based 

method, and damage tolerance, etc. [21].  

However, these conventional fatigue life models face 

challenges when aiming to achieve high precision and 

reliability in their predictions, especially when 

dealing with complex components or loads, to which 

sampling-related difficulties are added, as well as to 

being time-consuming and expensive processes [6]. In 

recent years, with the development of artificial 

intelligence and interdisciplinarity, machine learning 

(ML) is increasingly being used to uncover hidden 

relationships in data and make property predictions 

[5]. As ML algorithms possess greater capabilities for 

tackling the data relationships, it may be a promising 

tool for addressing the complex issues of fatigue life 

prediction [18]. 

Therefore, an increasing number of studies have 

applied ML methods to fatigue life prediction [18]. 

When developing models based on ML, the first 

crucial step is to properly define the input features to 

accurately map the target variable. Next, the process 

includes data collection and preparation, choosing the 

appropriate algorithm, training the model using a 

training set, evaluating performance with a test set, 

and ultimately implement the model [12]. Different 

algorithms have been adopted for different materials, 

e.g., neural networks (NN), decision trees (DT), 

regression analysis (RA), support vector machines 

(SVM), random forest (RF), boosting algorithms (BA), 

and Physics-Informed Neural Networks (PINN). 

UNIGOU Remote 2022     
Czech - Brazilian Academic Program     



However, predictive capacity is determined by the 

quality and quantity of available data. For fatigue life 

prediction, when experimental data is sufficient, 

machine learning can be a powerful tool [8]. 

In this article, a review of fatigue prediction methods 

using machine learning was conducted. The analysis 

aimed to catalog the various ML techniques applied to 

different materials and evaluate the effectiveness of 

the predictions generated. The reading and analysis of 

these articles were performed by considering the 

following questions: 

• Which ML technique is being utilized? 

• What materials/manufacturing process are 

being applied? 

• Is it a good prediction? 

• What are the pros/cons of the method? 

2. Methodology 

In the course of conducting a comprehensive review 

for this article, we employed a narrative literature 

review methodology. The selection of the studies was 

made through searches in the Research Databases of 

Google Scholar and Science Direct. Advanced searches 

were conducted using terms such as "fatigue life 

prediction" + "fatigue failure" AND "machine 

learning." The focus was on studies published after 

2018, a year in which there was a rising trend in the 

number of publications in this field. 

A total of 852 documents were found from the 

databases. In the filtering process, initially, 800 

articles were excluded after a preliminary analysis of 

titles and abstracts that did not align with the desired 

search terms. In the second step, 14 duplicates were 

removed. In the final step, only those articles that 

addressed the research questions and matched the 

specified publication date criteria were selected. 

As a result, 19 articles remained for reading and 

analysis in this review study. The following sections 

are structured as follows: the results section offers a 

brief summary and exploration of each selected 

article, while the discussion section synthesizes the 

information acquired from these articles. Finally, the 

conclusion section provides a concise recapitulation 

of the entire study. 

3. Results 

In this paper [2], a unified SVR fatigue life model with 

17 inputs, categorized into Mechanical properties 

(Elastic modulus, yield tensile stress, Ultimate tensile 

stress, elongation, surface hardness, etc.) and Loading 

parameters (maximum stress, stress rate, loading 

frequency), has been developed for the Ni-based 

superalloy family. This model addresses predictions 

for both Low Cycle Fatigue (LCF) which happens 

under with high stress amplitude and fewer loading 

cycles and High Cycle Fatigue (HCF) regimes with a 

high number of loading cycles with lower stress 

amplitude. It also investigates the impact of dataset 

size and highly correlated variables using the pairwise 

Pearson correlation. In conclusion, the SVR model 

achieve significantly higher predictive accuracy for 

fatigue life compared to classical models. Notably, the 

SVR model's prediction accuracy, when trained with 

only 526 data points, reached an acceptable level. 

However, the model exhibits increased prediction 

stability as the training dataset size increases. And, it's 

recognized that both the total strain range and test 

frequency are highly correlated variables with the 

investigated from a dataset perspective. 

In this work [3], the utilization of a neuro-fuzzy-based 

machine learning method for predicting the HCF of a 

stainless steel 316L. Notably, this material was 

manufactured using an additive manufacturing 

process, specifically the Laser Powder Bed Fusion 

(LPBF) technique. Additive manufacturing, or 3D 

printing, in this process, a high-power laser beam is 

directed to melt thin layers of metal powder, one layer 

at a time, to build three-dimensional parts layer by 

layer. LPBF, a specific additive manufacturing 

technique, employs a high-power laser to selectively 

melt thin layers of metal powder, allowing for precise 

fabrication of intricate metal parts. A dataset 

comprising 139 experimental fatigue life data points 

was utilized to develop two models using different 

sets of input variables: one based on processing 

parameters and post-processing conditions and the 

other based on tensile properties. In summary, the 

results demonstrate that the neuro-fuzzy approach 

successfully predicted the fatigue life, indicating that 

both sets of parameters can be utilized for 

constructing goods predictive models. 

In this study [4], the SVR model was utilized to predict 

fatigue life while considering the influence of the 

location, size, and morphology of defects in a LBBF Ti-

6Al-4V selective alloy. It was observed that the 

coefficient of determination (R2)- which provides a 

measure of how well a statistic model predicts an 

outcome, can reach up to 0.99. 

In this paper [5], different machine learning models 

(RF, ERT, GBDT and XGBoost) were used to analyze 

and predict the fatigue life of high-strength bolts, and 

the relationship between fatigue life of the bolts and 

the influencing factors was analyzed by SHAP method, 

that is a theoretic approach to explain the output of 

any machine learning model. Geometric 

dimensions and stress states of bolts were as input 

features, the errors of bolt fatigue life prediction of  



Fig. 1 - Resume Table. 

six machine learning models were compared. Among 

them, XGBoost has the best prediction level, with R2 

values of 0.883 in training set and 0.774 in test set. In 

addition, according to the analysis of SHAP value, 

the stress amplitude applied on the bolt has the 

greatest impact on the fatigue life. Nevertheless, there 

are still some limitations in this study, the high-

strength bolt dataset is not broad enough. 

In this section [6], three typical ML models (BP, 

Elman, and SVR) are selected for predicting the 

fatigue life of pumping rods- 30CrM alloy structural 

steel. A large sample dataset comprising rod diameter, 

defect diameter, defect depth, axial load, and fatigue 

life is used to create the training and test sets for the 

ML models. The results indicate that BPNN 

demonstrates strong generalization ability when 

compared to the prediction results of the others ML 

models, it can be observed that the maximum and 

minimum errors for BPNN are 18.65% and 2.66%, 

respectively. For Elman, the maximum and minimum 

errors are 111.33% and 6.78%, respectively, while for 

SVR, they are 43.93% and 2.97%, respectively. 

 

In [7],  (BP, SVR, RF) were employed to predict the 

fatigue life of FGH96 powder metallurgy superalloy 

based on a dataset encompassing geometry data 

(grain size, inclusion position and size, notch size, 

surface roughness, microstructure, and other factors), 

environmental data (ambient temperatures, and 

others conditions), and loading data. The results 

demonstrates that the trained ML models are effective 

and can be utilized for fatigue life predictions and in 

conclusion suggest incorporating some hidden 

physical fatigue information into the ML models. 

This article proposes a physics-informed neural 

network (PINN) based on the multiaxial fatigue life 

prediction equation and introduces the life model into 

the loss function of the artificial neural network [8]. 

PINN can learn the knowledge of physical equations 

and make the generated data have definite physical 

meaning. The inputs are variables calculated from 

stress-strain data and fatigue parameters that guide 

the physical equations. The study focuses on two 

materials: magnesium alloy AZ61A and titanium alloy 

TC4. Three models, namely SWT, FS, and Shang-Wang, 

are compared for predicting the fatigue life of the 

Reference 
Material and manufacturing 

processes 
Machine Learning 

algorithms 
Input variables 

[2] Ni-based superalloys SVR Mechanical properties, test parameters 

[3] Stainless steel-LBPF Neuro-fuzzy 
Processing and post-processing parameters, and 

tensile properties 

[4] Ti-6Al-4 V-SLM SVM Location, size, morphology of the defect 

[5] High-strength bolts, IRON 40Cr 
SVM, KNN, RF, ERT, 
GBDT, XGboost 

Geometric dimensions, stress states, stress 
amplitude, test 

[6] Sucker rod, 30CrMo BP, Elman e SVR F rod diameter, defect diameter, defect. 

[7] FGH96 superalloy AM BP, SVR, RF 
Geometry data, environmental data and fatigue 

process data. 

[8] 
AZ61A magnesium alloy and 

titanium alloy TC4, 
PINN Stress-strain data and fatigue parameters 

[9] Liga alsi10mg-LPBF SVM, RF 
Experimental conditions, mechanical properties, 

porosity analyses, surface morphologies 

[10] Stainless steel 316L-AM ANN, RF, SVM Process parameters and fatigue loads 

[11] Lead-free tin-based solders 
SVM, RBF, Boosting, 

CNN, ANN 
Composition, loading and geometry factors. 

[12] TA2-TA15 and TC4-TC11 (LMD) RF Mechanical properties 

[13] 
Ti6Al4V (AM), with additives: 
TA2-TA15 and TC4-TC11  

GABP-ANN 
Type of structural parts, nominal and 
concentration stress, temperature  

[14] Ti-6.5Al-2Zr-Mo-V (LDE) SVR 
Variables stress intensity factor range and pore 

types 

[15] 
Hollow adhesive joints with 

sealant DB527 
ANN Path coefficient, fatigue loads 

[16] Ti-6Al-4V (SLM) ANN-BP 
Material defect properties, fatigue load, and 

build orientation 

[17] Small-scale butt-welded joints GBT 
Load level, local weld geometry, parent material 

strength 

[18] PA38-T6 and E355 IRT, RF Strain amplitude, and loading paths 

[19] AlSi10Mg (AM) PINN 
Volume of the defects, the external surface of the 

defects, direction of the applied load. 



experimental data for these two materials. The FS and 

Shang-Wang models demonstrate good prediction 

results, while the SWT model provides non-

conservative results for torsional and out-of-phase 

loading paths. The results of feature importance 

analysis using SHAP analysis reveal that the most 

critical variables affecting fatigue life are the normal 

stress amplitude and the shear stress amplitude. 

In this study [9], the LPBF-built alsi10mg samples are 

used for the training of SVM and RF using different 

strategies and physical information. The dataset is 

divided into four groups of input features: 

experimental conditions, mechanical properties, 

porosity analyses, and surface morphologies. After 

comparing the predicted results with experimental 

outcomes, SVM exhibits better prediction 

performance, and the framework using physical 

information achieves higher prediction accuracy and 

generalization performance. 

A data-driven fatigue life prediction analysis is 

developed for AM stainless steel 316L based on 

continuous damage mechanics (CDM)- physical 

information (10). Various machine learning models, 

including (ANN, RF, SVM), are used to study fatigue 

lives considering AM process parameters (laser 

power, scanning speed, hatch space and powder layer 

thickness) and fatigue loads. Among them, RF exhibits 

the best performance, with results closely matching 

experimental data and predictions are sensitive to 

maximum stress and powder layer thickness. 

In [11] five machine learning models were employed 

to predict the LCF of four distinct series of tin-based 

solders by considering the composition, loading and 

geometry factors. Among these models, Boosting 

demonstrated the highest performance, indicating its 

capacity to associate different features and favorable 

non-linear fitting for predicting. Additionally, this 

method proves to be both precise and cost-effective. 

The performance order is Boosting > ANN > CNN > 

SVM > RBF.  

Fatigue models based on damage mechanics and the 

RF are conducted for smooth and notched samples of 

AM titanium alloy using the type of structural parts, 

nominal stress, temperature and stress concentration 

as parameters. The R2 is 0.875 for the TC4-TC11, 

outperforming the TA2-TA15 additive with an R2 of 

0.682. Overall, the prediction performance of the 

CDM-RF method is superior to that of the CDM (12) 

This article [13], introduces a new method for 

estimating LCF in titanium alloy (AM-Ti6Al4V) with 

additives AM-TA2-TA15 and AM-TC4-TC1. It employs 

the Continuous Damage Mechanics (CDM) theory, 

along with the Genetic Algorithm-optimized 

Backpropagation Artificial Neural Network (GABP-

ANN) model. The input features were structural 

component type, nominal stress, temperature, and 

stress concentration factor. The results indicate that 

the BP-ANN model is initially established. A genetic 

algorithm is used to optimize the initial parameters of 

the model, and the established GABP-ANN model 

further improved the accuracy and stability of the 

fatigue life prediction reached R2 = 0.9801. 

This study [14], employed a SVR algorithm to develop 

a fatigue life prediction model for the Laser-directed 

energy deposition (LDED) Ti-6.5Al-2Zr-Mo-V 

titanium alloy based on post-mortem fractography 

analysis. The model presented that the variables 

stress intensity factor range and pore types achieved 

a significant increase of at least 18.9% in correlation 

compared to other models. Additionally, other ML 

algorithms such as Multilayer Perceptron, ANN, RF, 

Gaussian Process Regression (GPR) were compared 

for validation. The RF model exhibited larger 

prediction errors, while the ANN model tended to be 

non-conservative. SVR emerged as an effective and 

accurate approach for prediction.  

This study investigates LCF in hollow adhesive joints 

with sealant DB527, emphasizing key factors affecting 

fatigue life [15]. The stress-based and energy-based 

fatigue life prediction models were developed and, in 

addition, one neural network-based method was 

adopted to predict the multiaxial fatigue life. The 

neural network method demonstrated superior 

predictive accuracy, supported by ample 

experimental data.  

This study aims to overcome data dispersion and 

propose an easy-to-use, non-redundant ML model for 

very high cycle fatigue (VHCF) analysis of titanium 

alloys, particularly SLM Ti-6Al-4V [16]. Monte Carlo 

simulation of the Beta-PERT type generates ample 

data scarcity. Backpropagation Neural is applied to 

model the nonlinear relationship between variables. 

The dataset comprises five inputs, including material 

defect properties, loading parameters and build 

orientation. The model achieved an impressive 

coefficient of determination (R2) and low Mean 

Squared Error (MSE) and effectively predicts VHCF 

behavior, saving researchers from labor-intensive 

experiments. 

In [17], the fatigue behavior of welded joints depends 

on factors like loading parameters, local weld 

geometry, and material strength. Small-scale welded 

joint samples were analyzed using Gradient Boosted 

Trees, a black-box model. The SHAP method was used 

to explain predictions, revealing loading data and 

angular misalignment as highly influential. The 

model's robustness and generalization capability 

were confirmed through cross-validation, even with a 

relatively small database. As more data becomes 

available, model performance is expected to improve.  



This article [18] introduces a method to predict 

multiaxial fatigue life for different loading paths using 

experimental data from aluminum alloys PA38-T6 

and non-alloy steel E355. The proposed approach 

combines Image Recognition Technology (IRT) and 

RF. Input features include strain amplitude and 

loading path, converted into vector data by IRT. The 

method demonstrates high accuracy, with almost all 

predictions falling within a R² of approximately 0.96. 

This method outperforms empirical models in 

prediction accuracy and fitting precision. 

This paper [19] presents a novel approach that 

combines ML with Physics-Informed Neural 

Networks (PINN) to predict the finite fatigue life of 

AM-metallic AlSi10Mg. The approach incorporates 

fracture mechanics constraints, overcoming data 

limitations. Experimental validation shows 

significantly improved predictions compared to pure 

ML tools, with an 83% increase in R² accuracy. The 

article also discusses the limitations of traditional 

fracture mechanics and highlights the emerging trend 

of Physics-Informed Machine Learning (PINN) to 

enhance predictions, particularly in data-scarce 

scenarios. 

4. Discussion 
The progress of the literature review reveals a 

successful variety of approaches across different 

materials, manufacturing processes, loading 

conditions, input variable, data quantities, and 

machine learning algorithms. This fact demonstrates 

the significant potential of the machine learning 

approach to enhance the accuracy of fatigue 

predictions compared to traditional models. In this 

section, the discussion focuses on a comprehensive 

discussion of the research results and findings. 

One of the remarkable characteristics is the wide 

variety of materials approach, such as stainless steels, 

titanium, nickel-based superalloys. Several studies 

have specifically focused on predicting fatigue life of 

components produced through additive 

manufacturing processes and powder metallurgy. AM 

techniques possess the capacity to economically and 

efficiently produce complex parts. However, these 

processes are associated with a multitude of 

parameters, including laser power, scanning speed, 

hatch spacing, and powder layer thickness, all of 

which can significantly impact fatigue life predictions; 

nonetheless, ML has demonstrated to be adept at 

handling and drawing analogies among these various 

parameters, making it a highly viable solution. 

Another noteworthy aspect is the variety of machine 

learning algorithms employed, such as Support Vector 

Regression (SVR), Random Forest (RF), 

Backpropagation Neural Networks (BPNN), and 

others. Each algorithm comes with its own set of 

advantages and limitations. Comparing these 

methods enables us to clarify their individual 

characteristics and pinpoint which prove most 

effective. Physics-based methods can incorporate 

prior physical knowledge, potentially enhancing 

prediction accuracy [8], [13], [19]. 

Another crucial aspect, which was explored in several 

articles, is the impact of dataset size and quality. In 

general, expanding the training dataset size tends to 

enhance prediction stability and accuracy. The data 

quality is equally essential, as eliminating outliers and 

errors is important to achieve precise and meaningful 

results, ensuring the reliability of the predictions. 

Some studies have proposed efficient strategies to 

supply that lack i.e., Monte Carlo simulation of the 

Beta-PERT [17], and using Physics-Informed like 

fracture mechanics constraints that have shown 

notable resilience in handling smaller or data-poor 

[19]. 

The appropriate selection of input variables is 

another critical step in fatigue prediction, and several 

articles have emphasized the importance of these 

factors in achieving accurate predictions. Some 

articles have proposed the application of methods 

such as SHAP [5], [8], [17], providing insights into the 

inputs and Pearson Correlation, which is a common 

way of measuring a linear correlation between two 

datasets [2]. These methods have been of great help in 

interpreting and understanding the factors that 

influence fatigue life predictions. 

In addition to these aspects, several articles addressed 

the challenge of predicting fatigue life under 

multiaxial loading conditions [7], [8], which are 

common in real-world applications. And, many 

reported high accuracy in fatigue life predictions, 

even in lower, high and very-high fatigue regimes.  

5. Conclusion 
In this paper, a literature review was conducted to 

analyze the techniques of machine learning used in 

fatigue prediction. First, after a thorough analysis by 

following a series of steps and analyzing the quality of 

the studies was identified 19 primary studies (2018–

2023).  Second, the main findings of each proposed 

article were summarized. Third, a discussion section 

was presented, in which, after the insights from all the 

articles, a general overview of the approaches was 

write. The main conclusions are as follows: 

• Machine learning methods demonstrates the 

versatility and reliability in predicting 

fatigue life, outperform traditional models 

across a wide range of applications. 

• There is no universal algorithm that can be 

applied to all variables, highlighting the 



necessity for tailored approaches, taking into 

account factors such as data complexity, 

dimensionality, and the nature of the fatigue 

phenomenon. 

• Techniques such as SHAP offer a great 

solution for analyzing the correlation 

between input data and fatigue prediction. 

• Both size and quality are extremely crucial 

factors. 

Finally, it is essential to acknowledge that the 

approach of machine learning in fatigue prediction is 

in an increasingly growing field, and there is a trend 

toward the development accurate and precise of 

prediction methods. 
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