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Abstract. This brief paper presents a review about linear parameter-varying (LPV) systems, 

addressing main approaches for the analysis and control designs. Moreover, some perspectives 

are discussed regarding its future applications. This LPV framework can be used to represent 

and model many different problems and systems, such as automotive systems, flight control, 

magnetic systems, among many others. Given the attention received by this system class, this 

survey aims to provide basic considerations regarding the representation of LPV systems and 

main mathematical definitions, including main techniques for the polytopic approach. As the 

Lyapunov functions remains one of the most used approaches to deal with such problems, this 

paper focuses on addressing their use. Finally, usual applications and problems of LPV systems 

are assessed in order to support the consideration of new study topics for this framework.   
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1. Introduction 
Linear parameter-varying (LPV) systems are an 
interesting approach to deal with many different 
problems [1,2]. While Linear time-varying (LTV) 
systems are a more general representation than the 
LPV one, the latter has a more concise and 
accessible theory as it particularizes some aspects of 
the former. Examples include automotive systems, 
flight control, wind turbines, magnetic systems and 
so on [3]. Therefore, the study of LPV systems 
became an interesting research topic in recent 
decades, in particular for controller designs [1]. 

Among the many approaches to cope with this 
system class, the so-called polytopic approach rises 
as a very interesting one. By representing the LPV 
system as a finite set of linear models on a convex 
hull, some useful techniques and methods become 
available to obtain analysis and design conditions 
[4]. Even some properties from the linear time-
invariant (LTI) can be adapted, which furthers 
supports the LPV system studies. Lyapunov 
functions (LFs) are an interesting option to deal 
with such problems [5], as they can be applied in an 
organized and established procedure to obtain 
tractable numerical problems. Mainly, Linear Matrix 
Inequalities (LMIs) became a standard 
mathematical tool to deal with polytopic LPV 
system representation. LFs may be used to deal with 

strategies as quadratic and poly-quadratic 
approaches [6], both established options in this 
context. 

Given these considerations, this brief paper aims to 
address some important basic definitions regarding 
LPV systems, focusing in the continuous-time 
polytopic class. The review objective is to present a 
comprehensive compilation of basic information 
regarding such topics, however assuring a 
satisfactory level of mathematical rigor. Besides 
analysis and design conditions commentaries, 
insights regarding works about LPV systems are 
also encompassed by this survey. 

This paper is organized as follows. First, in Section 2 
some basic definitions regarding continuous-time 
LPV systems are presented. Afterwards, some 
commentaries about stability analysis and control 
designs are provided. Then, Section 3 discusses 
some research topics regarding LPV systems. 
Section 4 concludes the survey. 

2. LPV systems 
This section will firstly present some basic 
definitions for the LPV systems in a polytopic form. 
Secondly, some of the main approaches to analyse 
stability and design controllers using Lyapunov 
function are considered. 



 

2.1 Basic definitions 

Before dealing with LPV systems, it is interesting to 
define the LTV system class. A state-space 
representation of this class can be given as 

{
 ̇( )   ( ) ( )   ( ) ( )

 ( )   ( ) ( )                      
                                 ( ) 

where  ( )    ,  ( )     and  ( )     are, 
respectively, the state, the input and the output 
vectors. If   is considered fixed, then equation (1) 
would rather represent a simpler LTI system. 

A LPV system is LTV system whose time-varying 
dependency lies on a parameter. Making use of the 
polytopic representation, we may define the LPV 
system as [7]: 

{
 ̇( )   ( ( )) ( )   (( )) ( )

 ( )   (( )) ( )                            
                      ( ) 

where it is possible to notice that all matrices now 
depend on the time-varying parameter  ( )    . A 
comparison of these system classes can be found in 
Tab. 1. One may note that if the parameter is only a 
priori known, then the general LTV structure must 
be considered. Moreover, the presence of 
uncertainties on the parameter may lead to a 
particular system class. 

Tab. 1 - Comparison of LTI, LTV and LPV systems 

Parameter 
 ( ) 

A priori 
known 

Real-time 
known 

Uncertain 

Constant LTI - Uncertain 
LTI 

Time-
varying 

LTV LPV Uncertain 
LPV 

 

It is important to highlight that there are other 
structures for the LPV dependency on the time-
varying parameter than the polytopic one, such as 
the linear fractional representation (LFR). This 
paper will focus in the former, given its wider 
popularity. In order to proper define the polytopic 
LPV system, it is necessary to characterize its time-
varying parameter. According to the polytopic 
approach, an interesting formulation is as follows 
[5]: 

{
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where   ( ) is a weighting function depending on 
the time-varying parameter  ( ) and     . Given 
that  ( ) his limited by maximum and minimum 
values, then   ( ) belongs to the unit simplex 

  { ( )     ∑  ( )      ( )   

 

   

}        ( ) 

The main focus of this paper is on continuous-time 
LPV systems; however, for the sake of fullness, let us 
present an discrete-time LPV system  

{
 (   )   ( ( )) ( )   ( ( )) ( )

 ( )   ( ( )) ( )                                      
         ( ) 

which is an equivalent class of the equation (2) and 
has compatible mathematical properties. One may 
note that the structure of both time frameworks is 
very similar. When the discretization process may 
lead to complications or if it is possible to model the 
system directly as discrete-time, then (5) becomes 
an attractive approach. 

2.2 Stability analysis approaches 

As it is well-known, while the analysis of LTI 
systems is straightforward for state-space systems, 
the same cannot be said for LPV system. LTI systems 
can be analysed through information as eigenvalues, 
frequency response, etc., but LPV systems, given its 
time-varying behaviour, require more sophisticated 
methods.  

One of the most popular methods to analyse the 
stability of a LPV system is based on Lyapunov 
functions [8]. The quadratic stability analysis, which 
originated from more general system classes, is a 
possible alternative to make use of LFs. A quadratic 
LF  ( ( )) is as follows 

 ( ( ))   ( )   ( )                                             ( )  

and    , which is called Lyapunov Matrix, 

While simple to use to solve many problems, it is 
well-known that this approach can be very 
conservative. A straightforward strategy to 
overcome such drawback is the poly-quadratic 
approach [5], where the LF is modified such that 

 ( ( ))   ( )  ( ( )) ( )                                ( )  

and  ( ( ))   . 

By taking the time-varying parameter into the 
Lyapunov matrix  , a less conservative solution to 
the stability problem can be found. Therefore, an 
analysis condition derived with such formulation is 
more likely to obtain improved results than the 
quadratic approach in (6). 

In order to proper transform Lyapunov function-
based conditions in numerically tractable problems, 
the LMIs are a well-established tool. There are many 
solving programs to deal with LMI conditions for 
LPV systems, many of them developed to work with 
Matlab. Some examples include Yalmip, LmiLab and 
SDPT3, each one of them with its own features. 

As example, a LMI condition can be given as follows. 
Using quadratic LF approach as in equation (6), it is 
possible to define that LPV system (2) is 
asymptotically stable if there exists a positive-



 

definite   such that 

  
                                                                  ( )  

for        , where state matrices    are obtained 
as in (3). This LMI condition can be promptly 
formulated and solved thanks to the polytopic 
formulation that allows the stability analysis of the 
LPV system by checking its polytope vertices. 

Besides these two main approaches, i.e. quadratic 
and poly-quadratic, there are many other options to 
deal with LPV systems through LFs. Some main 
examples include polyhedral Lyapunov functions, 
piecewise Lyapunov functions and homogeneous 
Lyapunov functions [7]. Each method has its own 
drawbacks, mostly regarding numerical issues. 
Nevertheless, it is important to highlight that there 
are many strategies and workarounds to mitigate 
such drawbacks and make these approaches more 
useful. 

2.3 Control design approaches 

It is possible to adapt the stability analysis 
conditions previously presented to encompass 
controller design conditions for LPV systems. This is 
possible by considering a closed-loop version of the 
system, such that the stability of both the controller 
and the system can be assessed [9]. 

Let us first address the quadratic stability 
conditions from (6). A possible structure for a 
controller using such formulation can be given by 
the following control law equation: 

 ( )    ( )                                                             ( ) 

where        is fixed a gain to be defined such 
that the system is stable. This technique is known as 
the robust output-feedback control. By making use 
of the LPV system output, the controller may be 
obtained. The control design may have the objective 
to stabilize the system given its own dynamics, to 
force the output track a reference signal or even 
reject an exogenous disturbance. 

As stated before, it is possible to make use of the 
LPV system parameter to obtain less conservative 
formulations. For example, let us consider the LPV 
controller presented in Fig. 1, where two signals are 
considered: time-varying parameter and output. 

 

Fig. 1 - Output-based LPV controller. 

By making use of the parameter-dependent LF, a 
possible structure for such controller can be given 

by the following control law equation [7]: 

 ( )   ( ( )) ( )                                               (  ) 

where  ( ( ))       is a gain to be defined such 

that the closed-loop system is stable. This technique 
is known as the gain-scheduled output-feedback 
control. Such approach is well-known to result in 
less conservative performance in comparison to the 
quadratic ones. 

If the LPV system states are available, it is possible 
to modify the control law to 

 ( )   ( ( )) ( )                                               (  ) 

where  ( ( ))       is also a gain to be defined 

such that the system is stable. This technique is 
known as the gain-scheduled state-feedback control. 
This approach depends on the availability of the 
systems states or on the existence of a state 
observer to adequately estimate them. 

Besides guaranteeing the closed-loop system 
stability, a controller design may also encompass 
other features, including performance indexes as    
and    criteria, uncertainty margins, robustness to 
faults, etc. All these considerations may be included 
in design conditions, as well as analysis conditions, 
such as the ones defined in terms of LMIs. 

3. Present studies and 
future trends 

This section begins considering some of the more 
popular research topics regarding LPV system. 
Afterwards, some commentaries regarding future 
works are presented. 

3.1 Present researches 

Nowadays, LPV systems are considered to deal with 
many different problems. Some of the more popular 
applications include: fault-tolerant strategies, 
including both detection and control structures 
[10]; non-linear and time-varying systems 
modelling and control [2]; data-based applications, 
considering statistical data to improve the 
application of LPV systems [11]; artificial 
intelligence (AI) approaches [12], combining neural 
networks and/or fuzzy systems to more traditional 
theories to obtain new results. 

3.2 Future researches 

Given the present studies, it is possible to consider 
which topics could be potential researches for LPV 
systems. While such opportunities already have 
some interesting works, certainly they are very 
important and trending topics regarding this area in 
particular and could use more researches. The main 
ideas include: modelling comparisons, where the 
many different LPV approaches, such as polytopic 
and LFR ones, could be proper compared under 
certain conditions to better understand each one 
and its features; complexity studies and reduction 



 

techniques, as some LPV systems may result in 
numerically prohibitive conditions and could 
benefit from such strategies; improved integration 
with data- and AI-based approaches, as both 
methods are in constant improvement in industrial 
and academic fields. 

4. Conclusion 
A brief review on LPV systems was presented by 
this paper. Focusing in the continuous-time case, 
this survey carried out the basic definitions 
regarding this system class using the polytopic 
approach. Considerations regarding the stability 
analysis of LPV systems were addressed, as well as 
some information about controller designs. 
Moreover, a discussion regarding present and future 
LPV system research topics were provided. One may 
note that, given the extent of the main topic, many 
considerations and interesting information were not 
addressed by this survey. Nevertheless, the 
provided concepts and theories arise as some of the 
most important regarding LPV systems. Future 
works may investigate and present further 
considerations regarding this relevant topic. 
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