

Anti-ulcer action of *Hibiscus rosa-sinensis*: review of articles published in 2021.

Beatriz Gomes Gameiro a.

^a Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo, Brazil, biaggameiro.20@gmail.com

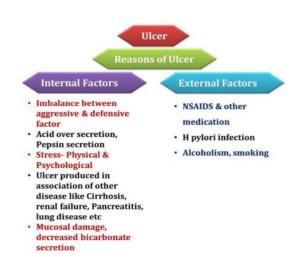
Abstract. This mini- review was conducted with the purpose of gathering information, of articles published throughout the year of 2021, about the therapeutic properties that Hibiscus rosa-sinenis L. triggers in cases of gastrointestinal ulcers, a disease mainly caused by the bacterium Helicobacter pylori.

New antibiotics are needed for H. pylori, because of the rising antimicrobial resistance that the world is facing right now, and so, medicinal plants are on the scope to solve that matter. The *Hibiscus rosa-sinensis* has presented many therapeutic attributions over the past years, there were antibacterial properties found in the flowers and anti-inflammatory activities in the leafs, with that in mind, this medicinal plant must be a promising way to anti-ulcer treatments. Herbal/ traditional medicine is been widely used in the West asia for centuries, as for example the chinese medicine, and now, the eastern medicine is trying to catch up with this knowledge that can be so enriching, especially if we can substitute the synthetic for the natural. Every year thousands of papers are published on the same subjects, hence the importance of review papers, which study articles on related subjects and make an overview, highlighing some parts of each one.

Keywords. Hibiscus rosa-sinensis, ulcer, medical plants, anti-inflammatory potencial.

1. Introduction

The use of medicinal plants dates from very remote times, mainly due to the ease of access and variety, this knowledge has been passed on from generations to generations in traditional communities. Developing countries are the ones which most rely on herbal medicine, as for it's better acceptance of the general public and the easier access, if compared to highly expensive synthetic drugs. Also, they have presented less side effects [3].


Mostly of this knowledge results in what has become scientific research today, through ethnopharmacological studies.

Originally from China and belonging to the Mlavaceae Family, Hibiscus rosa-sinenis L. has proven efetive against several health disorders. Studies point out that the flower and the leaf have antioxidante, anti-microbial, analgegic and even anticancer actions [1].

Secondary metabolites are substances produced by plants for their own survival, but many of them have hightherapeutic potential, as for example, in *H. rosasinensis* we have: flavonoids, anthocyanins, quercetin, cyaniding, kaempferol, and hydrocitric acid [2]

Ulcer is defined as a severe inflammation of the gastrointestinal mucosa, having two most commom forms: gastric ulcer and the duodenal ulcer.

Infection by the bacterium *H. pylori* is the main cause of this disease, accounting for 90% of the duodenal form and 70% of the gastric ulcer [3].

Fig. 1- Reasons of ulcer. Paricharak and Chougule et al. *World Journal of Pharmaceutical Research.* 2021.

This bacterium colonizes the stomach of more than 70% of the world's population, however mosto f these people are asymptomatic. In 1-2% of the cases this disease can progress to gastric cancer [5].

The main symptoms are: abdominal disconfort, intolerance to fatty foods, stomach pain and nausea [4].

The method used to treat ulcers is called "quadruple therapy", which consists of four types of synthetic drugs [3]. But there's a problem: there has been an alarming increase of antimicrobial resistance (AMR) in H. pylori, which directly corresponds to the increase of refractory infections [6], which are the occurence of the same infection multiple times in the period of six months or less.

2. Methodology

Ethnopharmacology is the practice of combining information acquired in traditional communities with chemical and pharmacological studies carried out in specialized laboratories. It starts with information on the therapeutic utility through traditional communities, and in the laboratories, the effectiviness (or not) of the mechanisms of action are proved.

Many studies have been carried out on the various potential applications of H. rosa- sinensis. Considering that this plant has antimicrobial and anti-inflammatory actions, it is a great candidate for ulcer treatment, since this is a disease caused by a bacterium ando ne of the symptons is inflammation of the gastrointestinal muscosa.

Through a bibliographical research, in digital platforms, of studies published in the year of 2021, this article gather the ones targeting the ulcer disease being treated with herbal approaches, and what role the *H. rosa-sinensis* were playing.

Kingdom	Plantae		
Subkingdom	Tracheobionta		
Division	Megnoliophyta		
Class	Magnoliopsida		
Subclass	Dilleniidae		
Order	Malvaceae		
Genus	Hibiscus		
Species	Hibiscus rosa sinensis		

Table 1- Hibiscus rosa-sinensis scientific classification. [1]

3. Results and discussion

There is still no clinical trials in human beings about herbal treatments for erradicating H. Pylori or healing ulcer, especialy focusing o H. rosa- sinensis, so what can be found for the time being is only bibliographic research. Nevertheless, a few In vitro studies were found.

In vitro models are used to measure the efficiency of the antiulcer activity in the chosen plant, one of these studies were about: Methanolic extract of the leaves, at a dose 200 and 400 mg/kg, showed Antiulcer activity in pylorus ligation induced gastric ulcer [4].

3.1 Aplicações por partes do *Hibiscus* rosa-sinensis

Several studies were carried out with diferente parts of *Hibiscus rosa-sinensis*, here are the main

ones that can be related to te treatment of gastrointestinal ulcer:

- Roots: used as a cough suppressant [1], later on studies showed that the roots were a source of vitamin C [2], so it makes sense that it is used to treat cold symptoms. As for ulcer matter, vitamin C is salso responsible for increasing immunity, so it would be harder for the bactéria to spread.
- Leaves: responsible for anti ulcer activity
 [4].
- 3. Flowers: has a greater effect on controlling the blood pressure, so it can be used for heart problems and high blood pressure, it has also been observed Gastroprotectant and antibacterial activities [1].

The red variety is most preferred for medicine porpouses.

Fig. 2- Hibiscus rosa- sinensis. Photo from Edgar Okioga on Pexels. No rights reserved.

3.2 Importance of herbal treatments

Researches showed that Antimicrobial resistance (AMR) is a global problem, and this is mainly due to the misuse of antibiotics, from the administration of inappropriate dosages to the recurrent use of this type of medication.

This is a serious matter, because resistance causes antibiotics to be ineffective, causing the person to follow a treatment longer than usual, and so, more time hospitalized and more expensive medicines. Bacterial infections that were easier to treat, now became a global health problem, in which AMR can even increase the death rate of these diseases.

This is where herbal medicine enters, in this case for gastrointestinal ulcer, since the phytotherapy decreases the chances of creating a resistance to H. pylori [5].

The next table preset twenty medicinal plants, in addition of the *H. rosa-sinensis*, with antibacterial and antiulcer activities. It is importante to know the wide range we have when talking about herbal medicine. The second table in a row is to get a perspective of how wide is the bibliografical research, how many phytotherapical aplications of the *H. rosa -sinensis* have been found so far.

S.No.	Common name	Botanical name	Family	Plant part (Antibacterial)	Plant part (Antiulcer)
1	Indian Gum Arabic tree, Babool	Acacia Arabica	Leguminoseae	Bark	Seedless pods, gum
2	Bengal quince, golden apple, Japanese bitter orange, stone apple wood apple, Bael, Belli	Aegle marmelos L.	Rutaceae	Leaves, bark & fruits	Leaves
3	Garlic, Lassan	Allium sativum	Amaryllidaceae	Bulbs	Bulbs
4	Aloe vera, Gwar Patha, Kuwar Patha	Aloe barbadensis M.	Asphodelaceae (Liliaceae)	Leaves	Leaves
5	Neem	Azadirachta indica	Meliacea	Leaves	Leaves
6	Indian Barberry, Tree Turmeric, Chitra, Daruharidra	Berberis aristata	Berberidaceae	Stem	Roots & woods
7	Beet root	Beta vulgaris L.	Amaranthaceae	Pomace	Roots
8	Papaya, Papita, Melon tree	Carica papaya	Caricaceae	Leaves	Seeds
9	Peepal, Peepdi	Ficus religiosa	Moraceae	Latex	Leaves
10	Gurhal, China rose, Jasod	Hibiscus rosa sinensis	Malvaceae	Flowers	Leaves
11	Mango, Aam	Mangifera indica	Anacardiaceae	Stem bark	Leaves
12	Sensitive plant, touch me not, Lajjamdi	Mimosa pudica	Fabaceae	Whole plant	Leaves
13	Drumstick tree, Horseradish tree, Senjana, Seeng	Moringa oleifera	Moringaceae	Leaves, bark, seed and flesh	Leaves
14	Holi basil, Tulsi	Ocimum sanctum	Lamiaceae	Leaves	Leaves
15	Gale of the wind, Stone breaker, Seed under leaf, Bhuaamla	Phyllanthus niruri	Phyllanthaceae	Leaves	Leaves
16	Black nightshade, Mokoi	Solanum nigrum	Solananceae	Whole plant	Leaves
17	Tamarind, Imli, Amli	Tamarindus indica	Caesalpiniaceae	Stem, bark and leaves	Seeds
18	Myrobalan, Chebulic myrobalan, Harra, Harad, Harde	Terminalia chebula	Combretaceae	Leaves	Fruits
19	False daisy, trailing eclipta, Bhringraj, Kesharaj, Bhingdo	Eclipta alba	Asteraceae	Aerial parts	Whole plant
20	Field mint, Wild mint, Corn mint, Podina, Fudina	Mentha arvensis	Lamiaceae	Leaves	Whole plant

Table 2- Medicinal plants. [3]

Sl no	Part with activity	Activity observed	Author
1.	Leaves	Antioxidant	Afshari et. al [8]
2.	Leaves	Antioxidant	Ghaffar et. al [9]
3.	Leaves	Antioxidant Prasad et. al [10]	
4.	Leaves and stem	Antioxidant	Deepa garg et. al [11]
5.	Leaves, stem ,root	Antioxidant	Patel et. al [12]
6.	Leaves and flowers	Antioxidant	Wong et. al [13]
7.	Flower	Antioxidant	Anusha Bhaskar et. al [14]
8.	Flower	Antioxidant	Sheth and De et. al [15]
9.	Flower	Antioxidant and Anti bacterial	Mak et. al [16]
10.	Flower	Antioxidant and Anti bacterial	Zulfiqar Ali Khan et. al [17]
11.	Flower	Antioxidant and Antigenotoxic effects	Khatib et. al [18]
12.	Flower	Antioxidant and Anti diabetic	Sankaran et. al [19]
13.	Leaves	Hypoglycemic and antioxidant	Zaki l H et.al [20]
14.	Leaves	Antidiabetic	Ojiako et.al [21]
15.	Leaves	Antidiabetic	Moqbel et.al [22]
16.	Leaves	Hypolglcemic	A Sachdewan et.al [23]
17.	Flowers	Antidiabetic	S Venkitesh et.al [24]
18.	Leaves	Diabetes with dyslipidemia	Mamun et.al [25]
19.	Flowers	Antidiabetic	Afiune L A F et.al [26]
20.	Flowers	Antidiabetic	Pethe M et.al [27]
21.	Flowers	Antidiabetic	Sharma k et.al [28]
22.	Root	Antidiabetic	Kumar V et.al [29]
23.	Flower	Gastroprotectant	Kumar et.al [30]
24.	Leaves	Ameliorative	Kandhare et.al [31]
25.	Flower	Ameliorative effect	Meena et.al [32]
26.	Leaves	Renal dysfunction	Kate et.al [33]
27.	Leaves	Anti-inflammatory	Raduan et.al [34]
28.	Leaves	Anti-inflammatory	Tomar et.al [35]
29.	Leaves	Analgesic	Sarwkar et.al [36]
30.	Leaves and flowers	Antibacterial	Uddin et.al [37]
31.	Leaves and flowers	Antibacterial	Tiwari U et.al [38]
32.	Leaves	Antibacterial	Hemarana K et.al [39]
33.	Leaves	Antibacterial	Udo I J et.al [40]
34.	Flower	Antibacterial	Ruban et.al [41]
35.	Flower	Antibacterial	Agarwal S et.al [42]
36.	Leaves	Antifungal	Sanjesh R et.al [43]
37.	Flowers	Antifungal	Nilima W et.al [44]
38.	Flower	Antihyperlipidemic	Sikarwar et.al [45]
39.	Flower	Hepatoprotective effect	Bistvas et.al [46]
40.	Leaves	Hepatoprotective effect	Sahu CR et.al [47]
41.	Flower	Cytoxic effect	Ali et.al [48]
42.	Leaves and stem	Cytotoxicity	Arullappan et.al [49]
43.	Leaves	Cardioprotective	Kate I E et.al [33]
44.	Flower	Cardioprotective	Khandelwal et.al [50]
45.	Flower	Cardioprotective	Gauthaman et.al [51]
46.	Flower	Immunomodulatory	Desai et.al [52]
47.	Flower	Immunomodulatory	Gaur et.al [53]
48.	Flower	Antidepressant	Shewale et.al [54]
49.	Flower	Antidepressant Antifertility effect	Jana et.al [55]
50.	Flower	Antirertility effect Antilithiatic	Nirmaladevi et.al [56]
51.	Leaves	Antilitriatic As coagulant aid	Awang et.al [57]
52	Leaves	As coagulant aid Wound healing activity	Awang et.al [57] Ali A et.al [58]
53.	Leaves	Wound healing activity Wound healing activity	Mondal S et.al [59]
54.	Flower		
		Wound healing activity	Nayak B S et.al [60]
55.	Leaves	Alopecia	Upadhyay et.al [61]
56.	Leaves	Hair growth promoter	Pathan A et.al [62]
	Leaves	Hair growth promoter	N Singh et.al [63]
57.			
58.	Flowers and leaves	Hair growth promoter	Adhirajan N et.al [64]
58. 59.	Leaves	Anticancer	Hinaz N et.al [65]
58.			

Table 3- Pharmacological activity of the H. rosasinensis. [1]

4. Conclusion

As previously mentioned, ulcers cause severe inflammation in the gastrointestinal mucosa and therefore, the search for more and new natural treatments is a very viable solution, since it would less attack the mucosa that is already very demaged. On top of that, the use of herbal antimicrobial drugs can work as an escape from de Antimicrobial resistance, due to it's effectiveness and moreover, in comparison to synthetic antibiotics, they have less side effects [3].

A lot of factors can be related to antimicrobial resistance, one of them is the misuse of medications, both when is used for too long and used repeatedly. For gastrointestinal ulcers there is no difference: the World Health Organization (WHO) has listed *H. pylori* as a "priority pathogen" due to the increasing cases of multidrug resistance.

Pharmacists are the health professionals responsible for dispensing medicines. It is known that in certain communities people don't have the same access to information, and the consequence is that they may not know how to correctly use some medications. As for that, it's the pharmaceutical duty to explain in detail how and for how long they are supposed to use the antibiotic, for example, since it could cause refractory infections.

Studies demonstrate that herbal medicine have been more and more accepted by the general public over the years, even though there is still no clinical proof that neither *Hibiscus rosa-sinensis* or any other herbal drug had effect on *Helicobacter pylori* or healed the ulcer, many studies are promising positive results with this and other medicinal plants to treat both H. pylori and ulcer.

5. Acknowledgement

The author acknowledges with thanks Federal University of São Paulo for the opportunity and INCBAC Institute for timely support and guidance through the writing process.

6. References

- [1] SIVARAMAN, Chinju M.; SAJU, F. Medicinal value of Hibiscus rosa sinensis: A review. *International Journal of Pharmacognosy and Chemistry*, 2021, 2(1):1-11.
- [2] VAISHNAVI BURLEY, Dr, et al. Medicinal plants for treatment of ulcer: A review. *Journal of Medicinal Plants*. 2021; 9(4): 51-59.
- [3] MAHATO, T. K. Herbal drugs: Boon for Peptic ulcer patients., *International Journal of Pharmaceutical Chemistry and Analysis.* 2021; 8(1):1–5.

- [4] PARICHARAK, Sukanya P., et al. A methodical review on antiulcer potential of herbal medicines from natural origin. *World Journal of Pharmaceutical Research.* 2021; 10(4): 679-706.
- [5] JAFAR, M., et al. Preparation and In Vitro-In Vivo Evaluation of Luteolin Loaded Gastroretentive Microsponge for the Eradication of Helicobacter pylori Infections. *Pharmaceutics*. 2021; 13(2094).
- [6] Gonzalez A., Casado J. and Lanas A. Fighting the Antibiotic Crisis: Flavonoids as Promising Antibacterial Drugs Against Helicobacter pylori Infection. *Front. Cell. Infect. Microbiol.* 2021; 11(709749).